Research
Paper
Acta Biochim Biophys
Sin 2005,37:547-554
doi:10.1111/j.1745-7270.2005.00080.x
Intracellular Distribution, Assembly and Effect of
Disease-associated Connexin 31 Mutants in HeLa Cells
Li-Qiang HE&, Yu LIU, Fang CAI, Zhi-Ping
TAN, Qian PAN, De-Sheng LIANG, Zhi-Gao LONG, Ling-Qian WU, Liang-Qun HUANG,
He-Ping DAI, Kun XIA*, Jia-Hui XIA,
and Zhuo-Hua ZHANG
National Laboratory
of Medical Genetics, Central South University, Changsha 410078, China
Received: February
18, 2005
Accepted: April 30,
2005
This work was
supported by the grants from the National High Technology Research and
Development Program of China (No. 2002BA711A07-03, 08), the Major State Basic
Research Development Program of China (No. 2004CB518800) and the National
Natural Science Foundation of China (No. 31830200)
&
Present
address: 24#, Lane 1400, West Beijing Road, Medical Genetics Institute of
Shanghai Jiaotong University, Shanghai, China
*Corresponding
author: Tel, 86-731-4805357; Fax, 86-731-4478152; E-mail, [email protected]
Abstract Mutations in connexin 31 (Cx31) are
associated with erythrokeratodermia variabilis (EKV), hearing impairment and
peripheral neuropathy; however, the pathological mechanism of Cx31 mutants
remains unknown. This study analyzed 11 disease-associated Cx31 variants and
one non-disease-associated Cx31 variant and compared their intracellular
distribution and assembly in HeLa cells and their effect on these cells. The
fluorescent localization assay showed no gap junction plaque formation in the
cells expressing the recessive EKV-associated mutant (L34P) and four hearing
impairment-associated mutants (66delD, 141delI, R180X and E183K), significantly
reduced plaque formation in the cells with five EKV-associated dominant mutants
(G12R, G12D, R42P, C86S and F137L) and no obvious change in the cells with two
other mutants (I141V and 652del12). Immunoblotting analysis showed that 12
mutated Cx31s, like WT-Cx31, are able to form the Triton X-100 insoluble
complex; however, the quantity of Triton X-100 insoluble complex in the
transfected HeLa cells varied among different Cx31 mutants. Additionally, the
expression of five EKV-associated dominant mutants (G12R, G12D, R42P, C86S and
F137L) caused cell death in HeLa cells. However, the five hearing
impairment-associated mutants did not induce cell death. The above results
suggest that disease-associated mutants gain deleterious functions
differentially. In summary, disease-associated Cx31 mutants impair the
formation of normal gap junctions at different levels, and the diseases
associated with Cx31 mutations may result from the abnormal assembly,
trafficking and metabolism of the Cx31 mutants.
Key words connexin 31;
erythrokeratodermia variabilis; hearing impairment; peripheral neuropathy; gap
junctional intercellular communication (GJIC)
Gap junctions consist of connexin (Cx) and mediate cell-cell
communication via direct intercellular exchange of small molecules (<1 kDa). To date, 19 Cx genes have been found in the mouse genome and 20 Cx genes have been found in the human genome [1]. Generally, gap junctions are formed by homomeric or heteromeric hemichannels that are assembled by the same or different kinds of connexin [2]. Mutations in connexin have been identified with various inherited diseases, including Cx32 mutation in X-linked Charcot Marie tooth disease [3,4], Cx26 and Cx30 mutations in deafness and skin diseases [5–11], Cx46 and Cx50
mutations in hereditary cataracts [12–20]
and Cx31 mutation in erythrokeratodermia variabilis (EKV) and hearing impairment
with/without peripheral neuropathy [21–26]. Cx31 is an important member of the connexin family, but the
molecular mechanism of Cx31 in human diseases remains unclear. Diestel et al.
[27] reported that the Cx31 mutant (G12R) was expressed at a comparable level
as wild type Cx31 (WT-Cx31) and localized on the plasma membrane. It also
showed a higher conductance than WT-Cx31 in dye couple studies. Di et al.
[28] reported that four EKV-associated Cx31 mutants (G12R, G12D, R42P and C86S)
exhibited defective trafficking to the plasma membrane and that the
deafness/neuropathy-associated mutant 66delD had a primarily cytoplasmic
distribution, but certain proteins were visualized at the plasma membrane in a
few transfected cells. These findings suggest that the distributions of Cx31
mutants are different.
Cellular localization assays have indicated that many connexin
mutants fail to assemble or localize to the cell membrane to establish normal
gap junction intercellular communication (GJIC) [29,30]. Biochemical assays
have also shown that many of the mutated connexins wrongly target the gap
junctions and/or fail to oligomerize correctly into hemichannels [31].In this study, the subcellular localization, effect on transfected
cells and solubility in Triton X-100 of 12 Cx mutants in HeLa cells were
analyzed. The study shows that different Cx31 mutants differ in terms of
intracellular distribution, assembly and effect on HeLa cells.
Materials and Methods
Construct with chimeric Cx31 mutation/EGFP
The Cx31 mutants (G12R, G12D, L34P, R42P, 66delD, C86S, F137L,
I141V, 141delI, R180X, E183K and 652del12) were produced by PCR using gene
splicing by overlap extension (Table 1). In the primary PCR, two segments of the Cx31 (C-segment and
T-segment) were amplified from pEGFP-Cx31 using the primers Cx31-F and Cx31-R
with the following conditions: 5 min at 95 ?C; 30 cycles of 20 s each at 95 ?C,
30 s at 50 ?C and 45 s at 72 ?C; and 10 min at 72 ?C. Moreover, Cx31 was
produced using the primers Cx31-F/Cx31-R in the secondary PCR under the
following conditions: 5 min at 95 ?C; 30 cycles of 20 s each at 95 ?C, 30 s at
62 ?C and 45 s at 72 ?C; and 10 min at 72 ?C. Furthermore, 12 mutants were
generated by PCR using specific primers listed in Table 1, under these
conditions: 5 min at 95 ?C; 30 cycles of 20 s each at 95 ?C, 30 s at 62 ?C and
45 s at 72 ?C; and 10 min at 72 ?C. Primers were synthesized by Shanghai
Bioasia (Shanghai, China). After the amplification, the PCR products were
directly cloned into a TA cloning vector, pGEM-T (Promega, Madison, USA). The
mutated Cx31 fragments were cut with two restriction enzymes (EcoRI and SalI;
TaKaRa, Dalian, China), and further cloned into the pEGFP-N1 vector (Clontech,
Mountain View, USA). All mutants were sequenced, and the clones with correct
base changes were chosen for subsequent study.
Transfection with Cx31/EGFP fusion constructs
HeLa cell line deficient in GJIC was purchased from CCTCC and
maintained in Dulbecco’s modified Eagle’s medium, supplemented with 10% FBS
(Gibco BRL, Gaithersburg, USA), 100 U/ml penicillin and 100 mg/ml
streptomycin, at 37 ?C in a moist atmosphere containing 5% CO2. Transfection was carried out using Lipofectamine 2000 reagent
(InvitrogenCarlsbad, USA) according to the manufacturer’s instructions.
Generally, a ratio of 1 mg DNA vs. 2 ml Lipofectamine 2000 was used for the HeLa cells. 24 h
post-transfection, cells were harvested for Western blotting, or fixed with
cold methanol for fluorescent staining. To select HeLa cell colonies stably
expressing WT-Cx31 or Cx31 mutants, the selective medium containing 800 mg/ml G418 was
renewed at 4-d interval. After 2–3 weeks,
single cell colonies were obtained. Under the fluorescence microscope, the
cell clones displaying green fluorescence were picked for further culture.
Immunofluorescent stainingImmunofluorescent staining
For the fluorescent staining of endoplasmic reticulum (ER) or Golgi
apparatus, HeLa cells were fixed with cold methanol for 15 min, washed 3 times
with 0.1% Triton X-100/PBS, 10 min each time, and then stained with con A or
WGA (conjugated with Alexa Fluor 594) for 15 min, and then washed 3 times with
PBS. HeLa cells were observed using a fluorescence microscope, and images were
taken using a laser-scanning confocal microscope (Bio-Rad Inc., Hercules, USA).
Solubility analysis of Cx31 mutants in Triton X-100 solution
24 h after transfection, HeLa cells expressing Cx31 mutants were
rinsed once with PBS and incubated on ice for 30 min with PBS containing 1%
Triton X-100 and a proteinase inhibitor cocktail (Sigma, St. Louis, USA). The
cells were gathered by scraping, and then centrifuged at 100,000 g for
30 min. The insoluble fractions were lysed in SDS sample buffer (0.5 M
Tris-HCl, pH 6.8, 20% glycerol, 4% SDS) and the protein concentration was
determined using a Bio-Rad DC protein assay kit. Equal amounts of each sample
were separated by 10% SDS-PAGE, and then transferred to a polyvinylidene
fluoride (PVDF) membrane by electro-transfer. The PVDF membrane was incubated
overnight with PBS containing 5% skimmed milk and 3% BSA. The primary antibody
(rabbit anti-Cx31 or anti-GFP polyclonal antibody, 1:1000; Clontech) was then
added for 2 h and washed 3 times with PBS with 0.1% Trition X-100 (PBST). Next,
the secondary antibody (HRP-conjugated goat anti-rabbit antibody, 1:10,000;
CalbiochemSan Diego, USA) was added for 1 h, and washed 3 times with PBST. The
membrane was then detected using an ECL kit (Amersham Biosciences).
Results
Localization of the Cx31 mutants
Fig. 1 showed the cellular localization
of WT-Cx31 and 12 Cx31 mutants 24 h post-transfection. HeLa cells expressing
EGFP exhibited green fluorescence in whole cells, both in the cytoplasm and
nucleus [Fig. 1(A)]. HeLa cells expressing WT-Cx31/EGFP displayed
punctate staining and aggregation at the plasma membrane, particularly in the
regions of cell-ell contact [Fig. 1(B)]. Punctate staining and
aggregation at the plasma membrane were also observed in G12R, G12D, R42P,
C86S, F137L, I141V and 652del12, particularly in the regions of cell-cell
contact [Fig. 1(C–I)]. In L34P, 66delD, 141delI, R180X and E183K strains, punctate
staining and aggregation did not exhibit at the plasma membrane [Fig. 1(J–N)] although Cx proteins existed in the
cytoplasm, mainly in ER or Golgi apparatus. The number of cells forming gap junction channels in adjacent HeLa
cells both expressing Cx31 mutants was also analyzed. The analytical results
indicated that the portion of cells with gap junction plaque in the five
dominant EKV mutants (G12R, G12D, R42P, C86S and F137L) was significantly lower
compared with that of WT-Cx31 (P<0.05), while the proportions in the two mutants (I141V and 652del12) clearly did not decrease compared with WT-Cx31 (P>0.05) (Fig. 2). In G12R, G12D, R42P, C86S and F137L strains, cell and nuclei
morphology changed 24 h post-transfection. G12D and F137L showed similar
patterns (Fig. 3), and G12R, R42P and C86S were also similar (data not
shown), which is consistent with the results of Common et al. [30].
Furthermore, the recessive EKV mutant, L34P, was found to be not lethal to HeLa
cells. Using the G418 screening, HeLa cell lines that stably expressed
WT-Cx31, L34P, 66delD, R180X, E183K, I141V, 141delI and 652del12 were obtained
(Fig. 4), but HeLa cell lines that stably expressed G12R, G12D, R42P,
C86S or F137L could not be obtained, which is contrary to the conclusion of
Common et al. [30] that “defective trafficking and cell death is
characteristic of skin disease-associated connexin 31 mutations”.
Solubility of Cx31 mutants in Triton X-100 solution
The formation of oligomers is a key step in establishing gap
junctions at the cell surface. Previous studies have shown that connexin
oligomers are insoluble in 1% Triton X-100, but its monomer is soluble [32].
This study examined whether the Cx31 mutants could form insoluble oligomers in
1% Triton X-100. The results revealed that all these mutants could form
insoluble oligomers in 1% Triton X-100 solution (Fig. 5). However, the
number of oligomers formed differed among the Cx31 mutants. Fewer oligomers were
formed by R180X than those of other mutants.
Discussion
Connexin, an essential component of gap junctions, must be
trafficked to the cell membrane to execute its biological function. Cellular
localization and function assay suggest that mutations in connexin cause
degradation in their expression, assembly, trafficking or formation of
functional gap junctions, thereby damaging communication between neighboring
cells. Deschenes et al. [29] studied the cellular localization of nine
X-linked Charcot Marie tooth disease (CMTX)-associated Cx32 mutants in PC12J
cells. These Cx32 mutants were grouped into three classes: (1) mutant mRNA was
transcribed, but little or no protein was detected; (2) mutant protein was
detectable in the cytoplasm and at the cell surface, where it appeared as
plaques and punctate staining; (3) the immunoreactivity of the mutant protein
was restricted to the cytoplasm and frequently colocalized with the Golgi
apparatus. Common et al. [30] studied four Cx30 mutants, and found that
three skin disease-associated mutants failed to be trafficked to the plasma
membrane, and thus could not form functional gap junctions. The
deafness-associated mutant can be trafficked to the membrane, but has no
channel activity.The present study examined 11 disease-associated Cx31 mutants in
HeLa cells. Three types of mutations, according to subcellular distribution,
were observed. Type I, including L34P, 66delD, 141delI, R180X and E183K, is
characterized by the cytoplasmic accumulation of Cx31 and the absence of cell
surface expression. These mutants alter the trafficking so that the proteins
accumulate in intracellular compartments, such as Golgi apparatus or other
structures like ER. Type II includes five dominant EKV Cx31 mutants, G12R,
G12D, R42P, C86S and F137L. The expression product of these mutants was
partially trafficked to the cell surface, so they are lethal to HeLa cells.
Type III is represented by I141V. I141V migrates mainly to the cell surface,
which resembles that of WT-Cx31. These findings suggest that different
mutations in Cx31 exhibit different subcellular distributions and none can
form functional gap junction intercellular channels.Mutations in the plasma membrane or secreted proteins that inhibit
transport to the cell surface might cause disease by general mechanisms
[33,34]: first, the affected protein can not be normally transported to the
plasma membrane, but can be routinely degraded; second, the mutant can not be
degraded, and thus accumulates within the cell and induces chronic endoplasmic
reticulum stress responses, causing major changes in cell physiology, such as
apoptosis, abnormal differentiation, altered proliferation, and so on. In this
study, Type I Cx31 mutations do not induce chronic endoplasmic reticulum stress
responses as stable cell lines were obtained. Therefore, these mutants may
cause disease via the first mechanism. Although Type II Cx31 mutants can be
trafficked to the cell membrane and form gap junctions, their function is abnormal
because their expression can cause cell death. Therefore, the disease may
result from the abnormal Cx31 function. Type III I141V mutant is found to
coexist in the allele with 141delI mutant [25]. Therefore, this mutant may be
recessive, and may cause a defect in normal GJIC. However, further studies will
be necessary to confirm this hypothesis.Notably, this study showed that four EKV-associated mutants (G12R,
G12D, R42P and C86S) could be trafficked to the plasma membrane and exhibit punctate staining; however, another
mutant (66delD) could not be visualized at the plasma membrane, in contrast to the findings of Di et al. [28]. We believe
that these differences can be explained as follows.(1) Connexin expression may be dependent on the type of cell. Cx31
mutants were transfected into NEB1 cells by Di et al. [28], while Cx31
mutants were transfected into HeLa cells in this study. Owing to connexin
protein deficiency, HeLa cells have been widely used to study connexin
functions [35–42]. NEB1 cells, as a kind
of keratinocytes, express several types of connexin. Endogenous connexins may
affect the expression of transfected Cx31. However, Cx31 should be expressed in
the epidermis, which contains several connexins. Therefore, the subcellular
localization of Cx31 mutants in NEB1 cells may resemble the actual distribution
of Cx31 mutants in patients more closely than the localization in HeLa cells.
The immunolocalization of Cx31 mutants in patients provides further evidence
of this. (2) Cx31 mutants were introduced into mammalian cells via different
methods. Diestel et al. [27] constructed G12R into an inducible vector
and transfected them into HeLa cells via calcium phosphate crystals.
Furthermore, Di et al. [28] constructed Cx31 mutants into pEGFP-N3, and
microinjected them into NEB1 cells. In this study, Cx31 mutants were
constructed into pEGFP-N1, and transfected them into HeLa cells by
Lipofectamine 2000.This study also investigated the border between the transmembrane
and cytoplasmic domain of Cx31 using NCBI or TMpred software. Although the
predicted positions of the transmembrane and extracellular and intracellular
domains differ among amino acid groups, the locations of the mutated sites
remain consistent. Fig. 6 shows the positions of these sites.
Disease-associated mutations were distributed in the whole structure of Cx31
except the IC2 and TM4 domains, indicating that the domains of Cx31 may play
different roles in the physiological functions of Cx31. The C-terminal part of
Cx31 may play a role in Cx31 oligomer formation in the cells, as the R180X
mutant transfected cells contain fewer oligomers than other mutants and
WT-Cx31.
In summary, this study has shown that different disease-associated
Cx31 mutants exhibit different subcellular distributions, abilities in the
formation of oligomers and effects on transfected HeLa cells, suggesting that
diseases associated with Cx31 mutations may result from the abnormal assembly
and trafficking of the mutants. Furthermore, this study has shown that deafness-associated
mutations and skin disease-associated mutations have different influence on the
function of Cx31. These findings may be helpful in understanding the mechanism
of diseases caused by Cx31 mutations.
References
1 Willecke K, Eiberger J, Degen J,
Eckardt D, Romualdi A, Guldenagel M, Deutsch U et al. Structural and
functional diversity of connexin genes in the mouse and human genome. Biol Chem
2002, 383: 725–737
2 Elfgang C, Eckert R,
Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF et al.
Specific permeability and selective formation of gap junction channels in
connexin-transfected HeLa cells. J Cell Biol 1995, 129: 805–817
3 Bergoffen J, Scherer SS, Wang S,
Scott MO, Bone LJ, Paul DL, Chen K et al. Connexin mutations in X-linked
Charcot-Marie-tooth disease. Science 1993, 262: 2039–2042
4 Wang HL, Chang WT, Yeh TH, Wu T,
Chen MS, Wu CY. Functional analysis of connexin-32 mutants associated with
X-linked dominant Charcot-Marie tooth disease. Neurobiol Dis 2004, 15: 361–370
5 Denoyelle F, Weil D, Maw MA, Wilcox
SA, Lench NJ, Allen-Powell DR, Osborn AH et al. Prelingual deafness:
High prevalence of a 30delG mutation in the connexin26 gene. Hum Mol Genet
1997, 6: 2173–2177
6 Kelsell DP, Dunlop J, Stevens HP,
Lench NJ, Liang JN, Parry G, Mueller RF et al. Connexin26 mutations in
hereditary nonsyndromic sensorineural deafness. Nature 1997, 387: 80–83
7 Zelante L, Gasparini P, Estivill X,
Melchionda S, D’Agruma L, Govea N, Mila M et al. Connexin26 mutations
associated with the most common form of non-syndromic neurosensory autosomal
recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 1997, 6: 1605–1609
8 Grifa A, Wagner CA, D’Ambrosio L,
Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R et al. Mutations in
GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet
1999, 23: 16–18
9 Lamartine J, Munhoz Essenfelder G, Kibar Z,
Lanneluc I, Callouet E, Laoudj D, Lemaitre G et al. Mutations in GJB6
cause hidrotic ectodermal dysplasia. Nat Genet 2000, 26: 142–144
10 Smith FJ, Morley SM, McLean WH. A novel
connexin 30 mutation in Clouston syndrome. J Invest Dermatol 2002, 118: 530–532
11 Jan AY, Amin S, Ratajczak P, Richard G,
Sybert VP. Genetic heterogeneity of KID syndrome: Identification of a Cx30 gene
(GJB6) mutation in a patient with KID syndrome and congenital atrichia. J
Invest Dermatol 2004, 122: 1108–1113
12 Mackay D, Ionides A, Kibar Z, Rouleau G,
Berry V, Moore A, Shiels A et al. Connexin46 mutations in autosomal
dominant congenital cataract. Am J Hum Genet 1999, 64: 1357–1364
13 Pal JD, Liu X, Mackay D, Shiels A,
Berthoud VM, Beyer EC, Ebihara L. Connexin46 mutations linked to congenital
cataract show loss of gap junction channel function. Am J Physiol Cell Physiol
2000, 279: C596–C560
14 Jiang H, Jin Y, Bu L, Zhang W, Liu J, Cui
B, Kong X et al. A novel mutation in GJA3 (connexin46) for autosomal
dominant congenital nuclear pulverulent cataract. Mol Vis 2003, 9: 579–583
15 Burdon KP, Wirth MG, Mackey DA,
Russell-Eggitt IM, Craig JE, Elder JE, Dickinson JL et al. A novel
mutation in the connexin 46 gene causes autosomal dominant congenital cataract
with incomplete penetrance. J Med Genet 2004, 41: e106
16 Bennett TM, Mackay DS, Knopf HL, Shiels
A. A novel missense mutation in the gene for gap-junction protein a3 (GJA3)
associated with autosomal dominant “nuclear punctate” cataracts
linked to chromosome 13q. Mol Vis 2004, 10: 376–382
17 Shiels A, Mackay D, Ionides A, Berry V,
Moore A, Bhattacharya S. A missense mutation in the human connexin50 gene
(GJA8) underlies autosomal dominant “zonular pulverulent” cataract,
on chromosome 1q. Am J Hum Genet 1998, 62: 526–532
18 Berry V, Mackay D, Khaliq S, Francis PJ,
Hameed A, Anwar K, Mehdi SQ et al. Connexin 50 mutation in a family with
congenital “zonular nuclear” pulverulent cataract of Pakistani
origin. Hum Genet 1999, 105: 168–170
19 Polyakov AV, Shagina IA, Khlebnikova OV,
Evgrafov OV. Mutation in the connexin 50 gene (GJA8) in a Russian family with
zonular pulverulent cataract. Clin Genet 2001, 60: 476–478
20 Willoughby CE, Arab S, Gandhi R, Zeinali
S, Arab S, Luk D, Billingsley G et al. A novel GJA8 mutation in an
Iranian family with progressive autosomal dominant congenital nuclear cataract.
J Med Genet 2003, 40: e124
21 Richard G, Smith LE, Bailey RA, Itin P,
Hohl D, Epstein EH Jr, DiGiovanna JJ et al. Mutations in the human
connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 1998, 20:
366–336
22 Richard G. Connexins: A connection with
the skin. Exp Dermatol 2000, 9: 77–96
23 Gottfried I, Landau M, Glaser F, Di WL,
Ophir J, Mevorah B, Ben-Tal N et al. A mutation in GJB3 is associated
with recessive erythrokeratodermia variabilis (EKV) and leads to defective
trafficking of the connexin 31 protein. Hum Mol Genet 2002, 11: 1311–1316
24 Xia JH, Liu CY, Tang BS, Pan Q, Huang L,
Dai HP, Zhang BR et al. Mutations in the gene encoding gap junction
protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet
1998, 20: 370–373
25 Liu XZ, Xia XJ, Xu LR, Pandya A, Liang
CY, Blanton SH, Brown SD et al. Mutations in connexin31 underlie
recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000,
9: 63–67
26 Lopez-Bigas N, Olive M, Rabionet R,
Ben-David O, Martinez-Matos JA, Bravo O, Banchs I et al. Connexin 31
(GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy
and hearing impairment. Hum Mol Genet 2001, 10: 947–952
27 Diestel S, Richard G, Doring B, Traub O.
Expression of a connexin31 mutation causing erythrokeratodermia variabilis is
lethal for HeLa cells. Biochem Biophys Res Commun 2002, 296: 721–728
28 Di WL, Monypenny J, Common JE, Kennedy
CT, Holland KA, Leigh IM, Rugg EL et al. Defective trafficking and cell
death is characteristic of skin disease-associated connexin 31 mutations. Hum
Mol Genet 2002, 11: 2005–2014
29 Deschenes SM, Walcott JL, Wexler TL,
Scherer SS, Fischbeck KH. Altered trafficking of mutant connexin32. J Neurosci
1997, 17: 9077–9084
30 Common JE, Becker D, Di WL, Leigh IM, O’Toole
EA, Kelsell DP. Functional studies of human skin disease- and
deafness-associated connexin 30 mutations. Biochem Biophys Res Commun 2002,
298: 651–656
31 Evans WH, Martin PE. Gap junctions:
Structure and function. Mol Membr Biol 2002, 19: 121–236
32 Musil LS, Goodenough DA. Multisubunit
assembly of an integral plasma membrane channel protein, gap junction
connexin43, occurs after exit from the ER. Cell 1993, 74: 1065–1077
33 Kim PS, Arvan P. Endocrinopathies in the
family of endoplasmic reticulum (ER) storage diseases: Disorders of protein
trafficking and the role of ER molecular chaperones. Endocr Rev 1998,
19: 173–202
34 Aridor M, Balch WE. Integration of
endoplasmic reticulum signaling in health and disease. Nat Med 1999, 5: 745–751
35 Li X, Olson C, Lu S, Nagy JI. Association
of connexin36 with zonula occludens-1 in HeLa cells, bTC-3 cells,
pancreas, and adrenal gland. Histochem Cell Biol 2004, 122: 485–498
36 Bader P, Weingart R. Conductive and
kinetic properties of connexin45 hemichannels expressed in transfected HeLa
cells. J Membr Biol 2004, 199: 143–154
37 Diestel S, Eckert R, Hulser D, Traub O.
Exchange of serine residues 263 and 266 reduces the function of mouse gap
junction protein connexin31 and exhibits a dominant-negative effect on the
wild-type protein in HeLa cells. Exp Cell Res 2004, 294: 446–457
38 Lin GC, Rurangirwa JK, Koval M, Steinberg
TH. Gap junctional communication modulates agonist-induced calcium oscillations
in transfected HeLa cells. J Cell Sci 2004, 117: 881–887
39 Thomas T, Aasen T, Hodgins M, Laird DW.
Transport and function of cx26 mutants involved in skin and deafness disorders.
Cell Commun Adhes 2003, 10: 353–358
40 Hunter AW, Jourdan J, Gourdie RG. Fusion
of GFP to the carboxyl terminus of connexin43 increases gap junction size in
HeLa cells. Cell Commun Adhes 2003, 10: 211–214
41 Sosinsky GE, Gaietta GM, Hand G, Deerinck
TJ, Han A, Mackey M, Adams SR et al. Tetracysteine genetic tags
complexed with biarsenical ligands as a tool for investigating gap junction
structure and dynamics. Cell Commun Adhes 2003, 10: 181–186
42 Sakai
R, Elfgang C, Vogel R, Willecke K, Weingart R. The electrical behaviour of rat
connexin46 gap junction channels expressed in transfected HeLa cells. Pflugers
Arch 2003, 446: 714–727